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Diffusion dynamics, moments, and distribution of first-passage time on the protein-folding energy
landscape, with applications to single molecules
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We study the dynamics of protein folding via statistical energy-landscape theory. In particular, we concen-
trate on the local-connectivity case with the folding progress described by the fraction of native conformations.
We found that the first passage-time~FPT! distribution undergoes a dynamic transition at a temperature below
which the FPT distribution develops a power-law tail, a signature of the intermittent nonexponential kinetic
phenomena for the folding dynamics. Possible applications to single-molecule dynamics experiments are
discussed.
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The study of diffusion along a complex energy landsca
is a very important issue for many fields. In the field
protein folding, the crucial question is how the many po
sible configurations of a polypeptide chain dynamically co
verge to a particular folded state@1#. Clearly, a statistical
description is needed for a large number of configuratio
states. According to the energy-landscape theory of pro
folding @3–5#, there exists a global bias of the energy lan
scape towards the folded state due to natural evolution se
tion. Superimposed on this is the fluctuation or roughnes
the energy landscape coming from competing interaction
the amino-acid residues. The folding energy landscape is
a funnel, and there are, in general, multiple routes towa
the folded state. Discrete paths emerge only when the un
lying energy landscape becomes rough, and local tr
~minima! start to appear. If the energy landscape is smo
the average diffusion time is a good parameter to desc
such dynamical processes. On the other hand, if the en
landscape is rough, there exist large fluctuations in the e
gies, and the diffusion time is expected to fluctuate v
much around its mean. In this case one needs to know
full distribution of the diffusion time in characterizing th
folding process.

It is now possible to measure the reaction and fold
dynamics of individual moleculesin vitro @6#. On complex
systems such as biomolecules, reactions in general do
obey exponential laws, and activation processes often do
follow the simple Arrhenius relation. However, these ph
nomena usually cannot be clarified by typical bulk measu
ments. The study of statistics for individual molecular rea
tion events can probe these reaction processes with m
more subtlety@7#. The information on the diffusion-time dis
tribution provides a way to help unravel the fundamen
mechanism of single molecule reactions. Previously m
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works have focused on the average rate behavior@8,9#,
whereas very few physical studies and discussions addre
on the whole distribution of the folding time. In this pape
we concentrate on the statistics and distributions of the
passage time~FPT! for the folding dynamics. A dynamic
transition temperature is found above which the FPT dis
bution is Poisson-like, and below which the distribution d
velops a power-law tail, where non-self-averaging behav
in kinetics emerges. The physical reasons for the power-
behavior is given in addition to the rigorous derivation. Fu
ther discussions will be on the need for cooperative mu
body interactions in order for the protein-folding drivin
force to be consistent with available experiments. In t
study, we will briefly summarize the theoretical framewo
and results, concentrate on the discussion of the underl
physics, and leave the rather lengthy and tedious mathem
cal details to a long paper@2#.

The framework we adopt here was first introduced
Bryngelson and Wolynes@3#. The problem of folding dynam-
ics is characterized by random walks on a funnel-like ene
landscape with roughness. In this model, the energy la
scape is generated by the random-energy model@10#, which
assumes that interactions among non-native states are
dom variables with given probability distributions. For th
model there areN residues in a polypeptide chain. For ea
residue there aren11 available conformational states, on
being the native state. A simplified version of the polypept
chain energy is expressed as

E52( e i~a i !2( Ji ,i 11~a i ,a i 11!2( Ki , j~a i ,a j !,

~1!

where the summation indicesi and j are labels for amino-
acid residues, anda i is the state ofi th residue. The three
terms represent the one-body potential, two-body inter
tions for nearest-neighbor residues in sequence, and inte
tions for residues close in space but not in sequence, res
tively. In this random-energy model the energies for no
native states and interactions are replaced by rand
©2003 The American Physical Society05-1
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variables with Gaussian distributions. Along with the a
sumption that energies for different configurations are unc
related, one can easily generate an energy landscape
roughness tuned by the spreads of these probability distr
tions. Using a microcanonical ensemble analysis, the ave
free energy and thermodynamic properties of the polypep
chain can be obtained@10#. Note that the polymer connectiv
ity is embodied in the entropy calculations.

In this study, we use the fraction of native conformatio
r as an order parameter to represent the folding progr
The system is assumed to be in quasiequilibrium with resp
to r, and the states are kinetically locally connected. In t
way the dynamics evolves continuously withr. With this
assumption we exclude from our current study the class
fast-folding proteins that do not have local connectivity a
can fold in discrete steps. The kinetic process is appro
mated via the use of Metropolis dynamics. Therefore,
transition rate from one conformation state to a neighbor
state is determined by the energy difference of these
states, and an overall constantR0 characterizes the time sca
of residue interactions. Readers are referred to Ref.@2,11# for
detailed derivations of the dynamic equations. In brief,
statistical energy landscape is first categorized by the o
parameterr, along which an energy distribution function
derived via Eq.~1!. With the use of Metropolis dynamics
one can obtain expressions for the waiting-time distribut
function and also the rate distributionP(R,r) for transitions
between successiver ’s. Finally, using continuous-time ran
dom walks ~CTRW!, the following generalized Fokker
Planck equation in the Laplace-transformed space can be
tained@3#:

sG̃~r,s!2ni~r!5
]

]r H D~r,s!F G̃~r,s!
]

]r
U~r,s!

1
]

]r
G̃~r,s!G J , ~2!

whereU(r,s)[F(r)/T1 log@D(r,s)/D(r,0)#, and

F~r!5NF2S de2
De2

2T D r2S dL2
DL2

2T D r21Tr logr

1T~12r!log
12r

n G . ~3!

In Eq. ~2! s is the Laplace transform variable over timet.
G̃(r,s) is the Laplace transform ofG(r,t), the probability
density function. G(r,t)dr gives the probability for a
polypeptide chain to stay betweenr and r1dr at time t.
ni(r) is the initial condition forG(r,t). F(r) is the average
free energy for the polypeptide chain.T is a scaled tempera
ture, n11 is the number of conformational states of ea
residue, andde and dL are energy differences between t
native and average non-native states for one- and two-b
interactions, respectively.De andDL are energy spreads o
one- and two-body non-native interactions. Note that
two-body energiesdL andDL include contributions from the
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second and third term in Eq.~1!. D(r,s) is the frequency-
dependent diffusion coefficient@3#:

D~r,s![S l~r!

2N2 D K R

R1sL
R

~r!Y K 1

R1sL
R

~r!, ~4!

wherel(r)[1/n1(121/n)r. The averagê&R is taken over
P(R,r), the probability distribution function of transition
rateR from one state with order parameterr to its neighbor-
ing states, which may have order parameters equal tr
21/N, r, or r11/N. The explicit expression ofP(R,r) can
be found in Ref.@2#. The boundary conditions for Eq.~2! are
set as a reflecting one atr50 and an absorbing one atr
5r f . The choice of an absorbing boundary condition ar
5r f facilitates our calculation for the first passage-time d
tribution. One can also rewrite Eq.~2! in its integral-equation
representation by integrating it twice overr:

G̃~r,s!52E
r

r f
dr8E

0

r9
dr9@sG̃~r9,s!2ni~r9!#

3
exp@U~r8,s!2U~r,s!#

D~r8,s!
. ~5!

In this work we mainly study the behavior of the FPT f
the order parameter to reachr f . This FPT is analogous to th
folding time in single-molecule experiments when the te
perature is below the folding transition. One can calcul
the FPT distribution functionPFPT(t) via

PFPT~t!5
d

dt
~12S!52

dS

dt
, ~6!

where S(t)[*0
r fdr G(r,t). The nth moment of the FPT

distribution function can be calculated via^tn&
5n!( 21)n21*0

r fdr Gn21(r), where G̃(r,s)5G0(r)
1sG1(r)1s2G2(r)1•••. By series expanding Eq.~5! with
respect tos, we can solve forGn(r) and thereforê tn& it-
eratively by matching the coefficients ofsn. One can also
solve forG̃(r,s) directly from Eq.~5!, using a linear inver-

sion technique. Observing thatP̃FPT(s)512sS̃(s), where

P̃FPT(s) andS̃(s) are the Laplace transforms ofPFPT(t) and
S(t), respectively, one can calculateP̃FPT(s) and therefore
investigate the behavior ofPFPT(t).

From this model, the resulting energy landscape is funn
like, with numerous configurations categorized by the deg
of folding, and also with built-in roughness and a bias towa
the native state, both of which can be controlled using
rametersDe, DL, de, anddL. These features render it pos
sible to mimic the energy landscape qualitatively for a lar
class of proteins. We start the numerical calculations by
ting R05109s21, N5100, andn510 to match the physica
scales. In this work we only study single-domain model p
teins. For proteins of larger size (N.100) they tend to form
multiple domains where spatial variations need to be ta
into account. This is beyond the scope of the current me
field approximation. For simplicity we assumede5dL and
5-2
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De5DL. Therefore, the ratio of the energy gap between
native state and the average of non-native states over
spread of non-native states,de/De, becomes an appropriat
parameter, representing the importance of gap bias tow
the folded state relative to the roughness of the landsc
One can show that only the relative ratios amongde, De,
andT are the controlling parameters in this problem. We
the initial distribution of the polypeptide chain molecules
be ni(r)5d(r2r i), wherer i is set to be 0.05. In our cal
culations we setr f50.9. This means that 90% of the amin
acid residues are in their native states.

The mean first passage time~MFPT! ^t& for the folding
process versus a scaled inverse temperatureT0 /T is plotted
in Fig. 1 for various settings of the parameterde/De. We
have an inverted bell-like curve for each fixedde/De, and
the MFPT reaches its minimum at a temperatureT0. At high
temperatures, the MFPT is large although the diffusion p
cess itself is fast@i.e., D(r,s) is large#. This long-time fold-
ing behavior is due to the instability of the folded state. T
MFPT is also large at low temperature, which indicates t
the polypeptide chain is trapped in low-energy non-nat
states. This is in agreement with simulation studies@8#.

By comparing the MFPT minimum for variousde/De,
one finds that this minimum becomes smaller when the r
of the energy gap versus roughness increases. This ca
easily understood. As the bias towards the native state
creases, it is easier to overcome the local traps to reach
folded state. On the other hand, if the barrier for local trap
shallower, then the folding process towards the native s
will be faster. This suggests that a possible kinetic criter
for selecting the subset of the whole sequence space lea
to well-designed fast folding protein is to maximizede/De.
In other words, one has to choose the sequence subs
such that the global bias overwhelms the roughness of
energy landscape@4,9,14#.

We also calculate higher-order moments for the FPT d
tribution. In Fig. 2 we show the behavior of the reduc
second moment,̂t2&/^t&2. We find that the reduced secon
moment starts diverging at a temperature around and be
T0, where the MFPT is at its minimum. This is an indicatio
of a long tail in the FPT distribution. The divergence of t

FIG. 1. MFPT vs reduced inverse temperatureT0 /T for various
de/De.
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second moment also shows that the dynamics exhibits n
self-averaging behavior. This can be explained by the f
that at high temperature the folding process is less sens
to local traps, and the energy landscape is smoothed out
the other hand, as the temperature becomes lower, local
start to make significant contributions, resulting in non-se
averaging behavior for different paths towards the fold
state. This non-self-averaging behavior can be obser
through large fluctuations in the FPT distribution.

From the study of higher moments, we find̂tn&
'n! ^t&n whenT.T0. This indicates a Poisson distributio
in the FPT distribution with an exponential tail at large tim
On the other hand, when the temperature is well belowT0,
we find a stretch-exponential form inP̃FPT(s) over several
orders of magnitude by solving Eq.~5! directly. This indi-
cates that at low temperaturePFPT(t) can be approximated
by a Lévy distribution, which hasPFPT(t);t2(11a) for
larget. In Fig. 3 we plot the exponenta versusT0 /T for the
casede/De54.0. We find thata is decreasing when the
temperature is lowered. On the other hand, asT gets closer to

FIG. 2. ^t2&/^t&2 vs reduced inverse temperatureT0 /T for vari-
ousde/De.

FIG. 3. The exponenta vs T0 /T in the casede/De54.0 when
T,T0. Below T0 the FPT distribution starts to develop a powe
law tail PFPT(t);t2(11a) at larget.
5-3
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T0, the power-law feature starts to break down andPFPT(t)
gradually resumes exponential behavior. The power-law
havior seen here can be understood@11# by noticing that as
the temperature is close to that of a partially frozen ene
state, we can expand the energy around this partially fro
energy. Since the density of states in terms of energy h
Gaussian distribution in our study, the expansion is equ
lent to the linearization on the exponentials of density
states. In other words, the density of states approache
exponential distribution exp(E/Tc), whereTc is the partially
frozen temperature close toT0. Since the transition state fo
folding is exponentially related to the energy barri
exp(2E/T), this results in a power-law distribution in th
transition rate as well as the folding timef (t)
;1/t (T/Tc)11. As we can see,a;T/Tc giving a physical
reason to the explanation of the numerical results obtai
above. As the temperature is lowered,a decreases and there
fore the power-law tail is even fatter.

From the results above, we find that for a fixed-ene
landscape, there exists a dynamic transition temperatureT0.
When the temperature is aboveT0, the FPT distribution is
Poisson, indicating exponential kinetics, and in random-w
language we have normal diffusion on the energy landsc
Below T0, the variance and higher moments diverge, and
FPT distribution shows a power-law decay behavior, exh
iting signs of anomalous diffusion. This indicates the proc
is non-self-averaging and distinct folding pathways eme
at various time scales. As a comparison, we have calcul
the folding-transition temperatureTf by identifying the
crossing point of folding and unfolding rate versus tempe
ture. We found thatTf is close to and slightly higher thanT0
for various settings ofde/De. This indicates that the equi
librium and dynamic properties in proteins are strongly c
related. Recent simulation and experimental results@12,13#
also indicate thatT0 is close to and slightly smaller thanTf .
But the turnaround nearT0 has been shown to be smooth
than that observed in our current work. This is partly due
the insufficiency of cooperative interactions in our stu
@12#. Since the dominant driving force towards folded pr
teins is believed to be the hydrophobic force, which ha
cooperative multibody-interaction nature, one has to inclu
the multibody interactions in order to improve the curre
model. When we included the three-body as well as the t
body interactions, we found thatT0 is still close to but
slightly smaller than the folding temperature. Furthermo
the sharp turnover behavior nearT0 in the MFPT versus
temperature is smoothed out. Instead of the sharp V shap
the absence of the multibody interactions~three-body or
higher!, the MFPT has a smoother U shape versus temp
ture aroundT0 in the presence of the multibody force~three!.
in
E
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This implies the necessity of the cooperative nature for
folding driving force. More details on this will be discusse
in a future publication.

In single-molecule folding experiments, it is now possib
to measure not only the mean but also the fluctuation
moments as well as the distribution of folding time@15#.
Under different experimental and sequence conditions,
can observe different behavior for the folding time and
distributions. A well-designed fast folding sequence w
suitable experimental condition exhibits self-averaging a
simple rate behavior. Multiple routes are parallel and lead
folding. A less well-designed sequence~with larger De)
folds slowly and often exhibit non-self-averaging nonexp
nential rate behavior, indicating the existence of intermed
states or local traps. In this case, the folding process is
sitive to which kinetic path it takes, since a slight change
a folding pathway may cause large fluctuation in the foldi
time, which indicates intermittency. From the singl
molecule experiments the fundamental mechanisms and
trinsic features of the folding process may be unravelled
typical bulk-molecule measurements, it is often hard to o
serve and analyze intermittent phenomena, because the
namics is averaged over numerous molecules. And furt
more, one cannot tell if the bulk phenomena are either fr
the intrinsic features of individual molecules or the inhom
geneous average over the molecules.

It is worth mentioning that although we focus on the stu
of the protein-folding problem in this paper, the approach
use here is very general for treating problems with bar
crossings on a complex energy landscape. In fact, sev
experiments on glasses, spin glasses, viscous liquids,
conformational dynamics already show the existence of n
exponential distributions at low temperature. In particular
recent experiment on single-molecule enzymatic dynam
@16# shows explicitly the Le´vy-like distribution for the on-
time relaxation of the underlying complex protein ener
landscape. The essence of this model lies in building an
ergy landscape with a probabilistic approach, which is of
applicable for complex, disordered systems. To improve
model, it is necessary to gain better knowledge for the s
tistical distributions on the energy landscape. Finally, an
teresting study on anomalous diffusion has been made
cently, using a fractional Fokker-Planck equation~FFPE!
@17# to describe dynamic processes characterized by
Lévy distributions. Our results show that the approach
use here can serve as a microscopic basis for the use of
a FFPE.
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